Each component of a building system is important, no matter if you decide to build a wood structure, steel structure, or a pole building. Have you ever stopped to think about the construction method being used and what all of those details will require? Is that something that even matters to you? Will you be looking over those details before you choose a builder?For example, if you’ve decided to build a pole barn for your next agricultural building do you understand the details that go into the entire construction process? Did your builder of choice explain to you the difference between snow and wind loads, structural diaphragms and column placement? If you answered “no” and are curious about those details then you need to ask your builder the following questions before you sign any contract.
Your new building will only be as strong as its weakest component. While there are many builders who say they can assemble a building, very few have the engineering resources and manufacturing capabilities to ensure that every component of your new building system is engineered correctly to optimize building performance and longevity. Here’s why that’s important…
All loads, regardless of whether they are vertical or lateral, must be able to pass from the areas in which the load is applied to the foundation and/or soil. This transfer of forces through the structure is called the load path. A continuous load path transfers all vertical and lateral loads from building component to component until the loads have been transferred into the foundation.
Buildings can also resist extreme lateral loads through the application of a principle commonly known as diaphragm design (or structural diaphragm).
A diaphragm is a flat structural unit acting like a deep, narrow beam. The term ‘diaphragm’ is usually applied to roofs and floors. A shear wall, however, is just a vertical diaphragm. Shear walls provide support for the roof and floor diaphragms transmitting forces into the foundation.
A diaphragm structure results when a series of diaphragms are properly tied together to form a unit. When diaphragms and shear walls are used in the lateral design of a building, the structure is termed a box system. With good common construction practice, most sheathed elements in a building add considerable strength to the structure.We wouldn’t be in business for as long as we have been if we weren’t honest with our customers. Like many things in life, there are exceptions with what functions correctly and not correctly. With a diaphragm structure, it’s important to know that some elements will not add strength to your structure. Those elements are:
If the walls and roofs are sheathed, adequately tied together and attached firmly to the foundation, many of the requirements of a diaphragm structure are already met. This explains the excellent performance of sheathed buildings in hurricane and earthquake conditions.
Applying the principle of diaphragm structure action results in reduced post size and embedment (foundation) requirements consistent with actual building performance. A firm foundation consisting of properly installed footings to support the intended structure and its design load is essential to the structural integrity and performance of your building. Footers must be:
This makes post frame construction more economical and competitive with other construction alternatives in code-enforced construction. In measurable terms, the post size (also known as columns) for a typical post frame building can be reduced by more than one nominal size if the diaphragm contribution of roof cladding is considered.
Columns are integral parts of a pole barn. They support the entire roof system and transfer all vertical loads (such as snow) directly to the footings. Columns are the backbone of your walls and assist in resisting horizontal loads most commonly occurring from winds. Keep in mind that your building’s diaphragm carries the majority of the wind loads so “oversized” columns will not necessarily make your building stronger, it is the engineered system that will ensure peace of mind.
For example, the post reduces from a 6 x 10 solid-sawn (or 3-ply, 2x10 nail-laminated) column when no diaphragm action is used, to a 6 x 6 solid-sawn (or 3-ply, 2x6 nail-laminated) column when diaphragm action is considered for a 40’ wide x 80’ long building with a 16’ eave height.
When principles of diaphragm action are not applied, the total lateral wind load must be resisted solely by the wall columns. Each side wall post then behaves like a cantilever beam, resulting in a higher post bending moment at the ground line which requires a greater embedment depth.
Diaphragm action also requires that all pieces of the structure work together, so connecting these pieces together is very important. This includes the correct size, type, and spacing of fasteners.
When comparing post frame builders, it is important that you pay attention to the fastening systems being used to attach the steel siding and roofing; how and when the system is applied. You want to evaluate the different offerings before you buy. We know that it sounds silly, but there’s a reason why this is important.
Because much of the post frame building strength comes from the diaphragm of steel on the sides and roof, the more secure the steel is affixed to the wood framing, the stronger the building. In addition, the ability of a shear wall to resist lateral loads requires a well-constructed roof diaphragm. The two work together to transfer lateral loads through the shear wall to the foundation. The effectiveness of the system is only as good as the quality and quantity of connections.
Diaphragm sheathing materials are typically a structural wood panel, such as plywood or oriented strand board (OSB), or architectural steel. Steel wall panels, fastened to the wood frame, serve as vertical diaphragms to transfer lateral loads to the foundation below.
Wood diaphragms have a large capacity to absorb impact loads, resulting in excellent performance in high wind or earthquake situations.
Are you ready to take the next step on your post frame building project? Contact us for a FREE pole barn quote.
Reference Source: "The Post-Frame Advantage: It's Long-Lasting and Resilient." Frame Building News, January 2003.
Have more questions about pole barn diaphragm design not covered in this article? If you need help designing and planning, please contact FBi Buildings at 1.800.552.2981 or click here to email us. If you are ready to get a price, click here to request a quote and a member of our sales team will call you!